Party Discipline in Elections and Latent Policy Ideals

Christian Cox* Ian Shapiro†
Yale University Yale University

May 1, 2022

Abstract

Individual members of Congress can have different policy preferences from the party leadership or special interest groups (SIGs), and the latter two may pressure members to shift their positions. To study this tension, we develop and estimate a multi-stage election model that incorporates party discipline with election spending. First, we uncover the unobserved “ideal” policies of these different political agents. Second, we estimate disciplining constraints and the importance of “policy gaps” with candidates to parties and SIGs. We then study various dimensions of discipline: the conditions under which representatives become more responsive to SIGs, the effects of safe seats on disciplining ability, and the limits of disciplining in the U.S. We find that safe seats make discipline less effective and that voter preferences are the main predictors of incumbent positions.

*Corresponding author: christian.cox@yale.edu
†ian.shapiro@yale.edu

We thank Frances Rosenbluth, Jon X. Eguia, Akanksha Negi, Gregory Huber, and seminar participants at MPSA for helpful comments. We also thank our research assistants Vivian Zhao, Matt Cline, Jake Berry, and Chris Yao.
1 Introduction

A member of Congress is elected based on the voters in their single district. The political party leadership wants the party to acquire or maintain majority control in Congress, which is based on votes across the country. Thus, the party needs an agenda that is popular nationwide. If voters are geographically heterogeneous, then there is an obvious tension between the agenda an individual member is willing to support and what the leadership wants for the entire party.

We study this tension by analyzing the gap in preferred policy between members and party leadership. This requires knowing the leadership’s “ideal policy” based on nationwide voter preferences. Since this is unobserved, we study the leadership’s optimization problem to uncover this latent policy ideal as a function of district and voter characteristics in many districts. Next, we build and estimate a novel electoral contest game with party discipline for the 2002-2018 House elections. We estimate the parameters that govern the decision-making of voters, candidates, party leadership, and SIGs, controlling for the strategic interaction of all political agents in both the general and primary elections. In addition to estimating voter preferences and spending constraints, we also estimate the latent policy ideals for SIGs, the “policy gap” penalty that the party leadership puts on members who stray from the party’s ideal, and the leadership’s disciplining constraints.

The party does not choose a candidate’s policy for them, but rather uses discipline to affect candidate decision-making. Thus one can model the feasible policy implementation through a party’s disciplining ability. We study party committee election spending, which affects the candidate’s probability of winning. The ability of party leadership to whip members depends on the safety of that candidate’s seat. Very safe incumbents, who are growing in number (Epstein and Corasaniti 2022), cannot be easily influenced. In particular, they are relatively more responsive to partisan primary voters, making discipline more difficult. Also, the party may not be interested in whipping them as unpopular policy could threaten the seat through primary voter pressure. This complicates the narrative because discipline can have downsides for the party. We incorporate these aspects in the model by including both the primary and general elections.

We find that the party leadership’s ideal policy position is more moderate than the average of their individual members with a larger gap for Democrats. The Republican leadership has a more partisan ideal position than the Democratic leadership (relative to the median voter nationwide),
which is partially due to seats being on average safer for Republicans. We also find that voters care more about the policy gap between voters and candidates than election spending or congressional committee assignments, and that Republican (Democratic) PACs have more moderate (extreme) ideal policies than political party leadership. Finally, the Republican party places a higher penalty on policy deviation than Democratic leadership.

Our counterfactual analysis indicates that making seats safer weakens discipline. Candidates become more extreme in safe seats as the primary election is relatively more important. As a consequence, parties do not reward safe seat incumbents with election spending in either the primary or general. Not only does the incumbent not need the support as much, but also their shift in policy reduces the willingness of the party to spend. Changing the effectiveness of party or SIG spending does not significantly change candidate positions. The party can also attempt to change positions by being stricter, but this is ineffective as party election spending matters less than candidate and outside-group spending. Overall, we find that a party’s inability to discipline is due primarily to the strong influence of voter preferences across districts combined with the relative ineffectiveness of swaying candidates with electoral support. This highlights a downside of party efforts to increase the number of safe districts via tactics like gerrymandering: stronger seats make the members in those seats less influenced by discipline, making the party weaker and governing more difficult.

We contribute to the literature by estimating leadership policy ideals, formally incorporating the “policy gap”, and simulating the relationship between safe seats and discipline. Furthermore, we allow for heterogeneous interest groups, primaries and general elections, and challenger entry in the model. This rich environment provides a novel setup that allows us to estimate campaign finance and party discipline counterfactuals. Our work is at the intersection of party discipline (Krehbiel 2000; Pearson 20151; Curry and Lee 2020), interest groups (Bennedsen and Feldmann 2002; Ceron, Curini, and Negri 2019; Epstein, Mealem, and Nitzan 2013), and the estimation of strategic party decision-making (Incerti 2018; Canen et al. 2021; Cox 2021; Frey et al. 2021). The discipline we consider is a loyalty reward via party spending, controlling for committee assignments, and is motivated by recent literature (Grimmer and Powell 2013; Pearson 2015; Thomsen

1She studies US House the decision-making of party leaders and how they balance party control and majority control, finding that moderates are less likely to be party loyalists and the party punishes those candidates, which leads to them exiting and may help explain the rise in polarization. This leads to party discipline strengthening over time.
et al. 2019; Adler and Cayton 2020; Provins, Monroe, and Fortunato 2021). We use election spending to measure SIG interest, which works for groups that use independent expenditures, but some may only give campaign contributions or lobby.3

Our election-seeking model (Mayhew 2004) is distinct from Bawn et al. (2012).4 Polborn and Snyder Jr. (2017) (and similarly Krasa and Polborn (2018)) consider a model where candidates care about candidate valence and the national party policy and they study the party incentives to moderate or not. This setup is similar to our party ideal’s optimization program, while in our model’s context, we allow for the candidate and party to have different positions. Curto-Grau and Zudenkova (2018) consider a model of party discipline where the party rewards loyal candidates with district spending; the trade-offs for the candidate are similar to our model as the candidate must choose between voters and the party. We parallel this analysis and also incorporate the party’s ideal optimization, SIGs, different kinds of rewards, and model-based counterfactual analysis.

The paper proceeds as follows. Section 2 gives the model exposition. Section 3 details the data. Section 4 explains the estimation steps. Section 5 presents the results. Section 6 concludes.

2 Model

We present a game-theoretic model to capture the salient aspects of the campaign finance disciplining environment. Voters, donors/SIGs, and the party leadership all have ideal policies that may differ from the candidate’s selected position. The key object that political agents have preferences over is the policy gap: the absolute difference between a candidate’s policy position and the ideal

2Pearson (2015) finds committee assignments to be a major influencing instrument, but the trend in party leadership taking a bigger role in campaign finance to be geared more towards electoral incentives rather than discipline. Adler and Cayton (2020) find a growing trend in the importance of committee assignments for campaign fundraising. Earlier research found mixed results on the effects of Party electoral support on candidate loyalty (Cantor & Herrnson 1997).

3Dominguez and Skinner (2014) use campaign contributions to characterize alignment, and study why so few SIGs get involved in party politics. Candidates can also strategically use contributions, as there is evidence of committee assignment rewards for incumbents who transfer campaign funds to assist other candidates (Heberlig 2003).

4They develop a theory of how political parties are affected by activist groups. In their framework, the activist interest groups develop agendas and screen candidates in the primaries. They argue their model is distinct from an election-seeking politician centric model; in the latter model, politicians respond primarily to voter preferences and use interest groups for funding. Their model argues for less-responsive politicians via voter blind-spots to policy specifics.
policy of the political agent in question. Each political agent can sway the candidate to narrow the policy gap through pressure. A candidate wants votes to win the election in their district. To win the (general) election, the candidates must first win a primary election. The primary involves the candidate facing off with an opponent within that party; the primary election is closed and only voters aligned with the party vote in the primary. The winners of the primaries face off in the general election.

Voters’ decisions are influenced by their policy gap, election (ad) spending, and exogenous factors including congressional committee assignments. Spending can be done by the candidate, “outside” groups like PACs (SIGs), and the party leadership. The ability of a candidate to spend is based on fundraising from donors, who are affected by their policy gap and committee assignments. SIGs and the party spend to help a candidate, and how much they spend is influenced by the candidate’s win probability and their policy gap. The candidate chooses policy incorporating all of these factors. The whole game is solved by backward induction. While we include committee assignments as a control, we abstract away from modeling how the party leadership allocating assignments across members as that induces correlation across all districts and greatly complicates the formal analysis.

2.1 Stage 1: Party Leadership Ideal Policy

There are two parties g, Democrat D and Republican R. There are N districts/seats with candidates $c \in \{D_1, D_2, R_1, R_2\}$ for each district $i \in \{1, ..., N\}$. Candidates choose a policy $p_{ci} \in [-1, 1]$ on a left to right spectrum. Suppose the (national) party leadership has an ideal national agenda captured as a single policy $p_g \in [-1, 1]$ per party. Consider a hypothetical situation in which party leadership could enforce one policy for all candidates to use as their policy agenda, meaning all members vote in exact alignment with party leadership. What policy would the party prefer in this “first-best” (infeasible ideal) case? Consider a seat maximizing party’s objective, where P_{ci} is the

5We only consider the two candidate per party as most primaries only have at most two with non-trivial spending.

6We do not study multi-dimensional policy given the lack of sufficient panel data on district level voter opinions on individual issues; current methods rely on combining surveys with census information (Warshaw and Rodden 2012). Furthermore, issue specific analysis is too large of a space to study candidate-decision making, but the multi-dimensional policy space can be simplified (Curry and Lee 2020; De March et al. 2021).
The chance of winning the election, taking both the primary and general election into account:

\[
\max_{p_g} \sum_{i \in \{1,...,N\}} P_{ci}(p_{ci} = p_g)
\]

(1)

In the objective above, the party wants policy that is popular nationwide but must also be weary of alienating primary voters as they do not want extremist candidates winning primaries.\(^7\) Note that the party is assumed to be seat maximizing; this is not innocuous as they could be majority seeking or weight seats differentially. We choose the seat maximizing approach in part because Incerti (2018) finds that this model fits the data better in the context of spending.\(^8\) We believe such a strategy in this hypothetical party decision is an adequate approximation to long-run equilibrium behavior. We abstract away from modeling agenda control, platform formation, and the specifics of voting in Congress. Our model aims at characterizing policy ideals driven by revealed voter preferences from election outcomes.

The program in equation (1) is solved simultaneously by both parties.\(^9\) The summation above is over all districts in the sample per election; this differs from the party only considering districts in which they have incumbents. This latter approach is reasonable as only those districts are relevant to the party’s decision-making. Considering all districts is appropriate if we think the party attempts to influence same-party “mainstream” challenger positions.

2.2 Stage 2: Incumbent Policy

The incumbent (say \(c = R_1\)) chooses a policy to maximize their chance of winning the election \(P_{ci}\). Candidates cannot change policy throughout the election. Let \(p_i\) be the vector of positions for

\(^7\)If the party considers spending in their ideal policy calculation, then ideal policy could change as spending can compensate for unpopular policy in a given district.

\(^8\)There are other considerations, such as differences in the objective when the party holds a majority vs minority, or the difference between keeping a seat vs picking one up. Implementing such heterogeneity would be either ad-hoc or require additional parameters not separately identifiable from the parameters of interest given available data.

\(^9\)To address possible multiple equilibria, first we numerically solve for the equilibrium across multiple starting values. Second, we discretize the choice space and re-frame the game as a finite normal form game where we can simply evaluate the grid of choices for both parties, find a pure strategy equilibrium, validate whether it is close to the continuous form version of the game, and directly check for multiple pure strategy equilibria in the discrete version.
all candidates in district i

$$\max_{p_{ci}} P_{ci}(p_{ci})$$ \hspace{1cm} (2)

Since this position takes place at the beginning, we think of it as the revealed position that the candidate takes the 2 years up to the election, and the voters reward them for what they have done. This retrospective voting approach is common and empirically grounded (Campbell, Dettrey, and Yin 2010; Healy and Malhotra 2013). This is distinct from a “promise” style position where the position on which they are elected is what they use in the next period. To dynamically interpret our setup, the candidate re-evaluates their policy after each election. This stage is a single-agent environment with a bounded choice variable and a finite objective function, yielding a solution.

2.3 Stage 3: Challenger Entry

Next, challengers decide to enter $e_{ci} \in \{0, 1\}$. To rationalize non-entry, we allow challengers to have entry costs $F_{ci} > 0$.

$$\max_{e_{ci}} e_{ci} \cdot (P_{ci}(e_{ci}|p_{ci}^I) - F_{ci})$$ \hspace{1cm} (3)

This stage occurs after the incumbent’s policy p_{ci}^I to capture how challengers may enter based on the incumbent’s decision. This stage is a finite player binary choice complete information normal form game which implies existence of a solution.

2.4 Stage 4: Challenger Policy

Then the entrants choose a policy p_{ci} knowing the set of entrants (and the incumbent’s policy), where the entry cost is now sunk.

$$\max_{p_{ci}} P_{ci}(p_{ci}|e_{ci}, p_{ci}^I)$$ \hspace{1cm} (4)

It can be shown that under the voter preference parameter values observed in the data, the second order conditions are negative and we can apply the Debreu, Glicksberg, and Fan Theorem for existence of a pure strategy Nash equilibrium for this specific stage.
2.5 Stage 5: Primary Election

There are many voters \(v \) in district \(i \). The primary voters registered to a given party have preferences on the policy gap between their own ideal \(p_i^P \) and the candidate’s choice \(p_{ci} \), the candidate’s congressional committee assignments \(d_{ci} \), additional covariates \(X_{ci}^P \), unobserved characteristics \(\xi_{ci}^P \) (valence), and individual specific unobserved idiosyncrasies \(\varepsilon_{vc_i}^P \). For each candidate in the primary election, the candidate campaign committees, PACs/SIGs, and party leadership committees \(k \) simultaneously engage in costly unobserved fundraising which translate, via their cost function \(c_{kci}^P \), into observed primary election spending \(S_{kci}^P \geq 0 \). The voter’s indirect utility for voting for a certain candidate \(U_{vc_i}^P \) is the following (adapted from Gordon & Hartmann (2016) and Cox (2021)):

\[
U_{vc_i}^P = \gamma_i^P (p_i^P - p_{ci})^2 + \delta^P d_{ci} + \sum_k \beta_k^P (S_{kci}^P)^\theta + X_{ci}^P \beta^P + \xi_{ci}^P + \varepsilon_{vc_i}^P
\]

(5)

Abstention has utility \(U_{v0i}^P = \varepsilon_{v0i}^P \). The parameters \(\beta^P \) capture the influence of the characteristics on their utility and \(\gamma_i^P \) captures their district specific preferences over policy. If \(\gamma_i^P < 0 \), voters punish candidates who stray from their preferred policy.

The voter’s (expressive and sincere) voting decision is based on which candidate gives them higher utility \(U_{vc_i}^P > U_{vc_i}' \). With individual idiosyncrasies \(\varepsilon_{kci}^P \) distributed identically and independently Type 1 Extreme Value, the probability of choosing candidate \(c_i \) (over the primary opponents in the set \(C_i^P \) and not voting at all) has a Logistic functional form. Using this we can derive the share of votes that candidate \(c_i \) receives in the primary election, letting \(u_{ci}^P = U_{vc_i}^P - (\xi_{ci}^P + \varepsilon_{vc_i}^P) \):

\[
s_{ci}^P = \frac{\exp(u_{ci}^P + \xi_{ci}^P)}{1 + \sum_{c' \in C_i^P} \exp(u_{c'i}^P + \xi_{c'i}^P)}
\]

(6)

The candidate wins if they have the highest share (plurality not majority rule). Suppose that \(\xi_{ci}^P \) is not perfectly observed by the candidates (or committees). Let the candidates have beliefs over how they are perceived \(\xi_{ci}^P \sim iid Type 1 Extreme Value with location \(\psi_{ci}^P \) and scale \(\sigma_{\xi^P} \). Then the probability of winning the primary \(P_{ci}^P \) from the candidate’s perspective (as a function of spending and conditional on policy and committee assignments) is the following:

\[
P_{ci}^P (S_{ci}^P|p_i, d_{ci}) = \frac{\exp((u_{ci}^P + \psi_{ci}^P)/\sigma_{\xi_i^P})}{\sum_{c' \in C_i^P} \exp((u_{c'i}^P + \psi_{c'i}^P)/\sigma_{\xi_i^P})}
\]

(7)

Each committee \(k \) decides how much to spend based on the loyalty weight \(\omega_k(p_k, p_{ci}) \), which is
a function of the policy gap between the candidate and the committee; let p_k be their ideal policy.

$$\max_{S_{ci}} P_{ci}^P(S_i^P|p_i, d_{ci}) \cdot \omega_k(p_k, p_{ci}) - c_{kci}^P(S_{kci}^P|p_{ci}, d_{ci})$$ (8)

The spending affects voting decisions and a winner of each primary is decided. Note that committees internalize the opposing side’s primary when deciding how much to spend in their own as the general election opponent affects their primary payoff. The spending stages mirror those from Cox (2021) and the equilibrium existence and uniqueness results apply.¹⁰

2.6 Stage 6: General Election

The probability of winning the general election P_{ci}^G conditional on winning the primary W_{ci}^P has a similar form to the primary, just with different voters and election specific parameters:

$$P_{ci}^G(S_i^G|p_i, d_{ci}, W_{ci}^P = 1) = \frac{\exp\left((u_{ci}^G + \psi_{ci}^G)/\sigma_{ci}^G\right)}{\sum_{c'\in C_i^G} \exp\left((u_{c'ci}^G + \psi_{c'ci}^G)/\sigma_{ci}^G\right)}$$ (9)

For each candidate that won their primary $W_{ci}^P = 1$, the committees k engage in fundraising which generate, via their costs c_{kci}^G, general election spending $S_{kci}^G \geq 0$. Their payoff is similar to the primary but now is just conditional on the primary outcome and with a new set of voters and costs. The loyalty weight is the same as policy has not changed from the primary.

$$\max_{S_{kci}^G} P_{ci}^G(S_i^G|p_i, d_{ci}, W_{ci}^P = 1) \cdot \omega_k(p_k, p_{ci}) - c_{kci}^G(S_{kci}^G|p_{ci}, d_{ci})$$ (10)

The spending affects voting decisions of voters and a winner of the general election is decided. The main trade-off a candidate faces with respect to voters is balancing their policy between the primary and general in the case that policy preferences differ across those voters. Their secondary concern is balancing between voter, party, and SIG preferences.

3 Data

We study the United States House of Representatives. The key variable of interest per election cycle is a composite one-dimensional “policy position” on a left to right scale (-1 to 1) that captures an individual or group’s political alignment. We want this variable for voters, candidates, the

¹⁰Note that the only tool we model for SIG influence is spending money during the election; we abstract away from any informational lobbying elements (Cotton 2012; Schnakenberg and Turner 2021).
national party leadership, and SIGs. Beyond this, the political environment includes district characteristics, congressional committees, campaign contributions, and election spending. We assume that we can approximate the ideal policy for voters and the chosen policy for candidate directly from data. The latent ideal policies for candidates, party leadership, and SIGs must be estimated. We get candidate ideology from CFscores (Bonica 2014), a measure based on the contribution network of all donors. While this measure has its problems, there is no alternative that is observed for challengers, and the challenger’s policy is an important factor in shaping the incumbent’s choice.

We use election results from CQ Press and the FEC, and measure the safety of the seat based on previous literature (Kustov et al. 2021). Specifically, we use re-scaled lagged Presidential election votes to measure a district’s general election voter preferences, acknowledging the difficulties with measuring and interpreting policy preferences (Kernell 2009). We also need an ideology variable for primary voters as they can influence candidate policy (Nielsen and Visalvanich 2017). We use previous Presidential primary data: the convex combination of candidate ideology weighted by vote-share gives a district-specific information on Primary preferences. We scale this by its mean and multiply it by the general election preferences and a factor of 5 (chosen to maximize fit).

We look at PACs and Super PACs to gage SIG election influence. The candidate takes into account the SIG’s preferences when making their policy choice. SIGs reveal their support for candidates via campaign contributions and independent expenditures. We get campaign contributions and election spending from Open Secrets and the FEC. We do not consider non-financial forms of support such as get-the-vote out campaigns by activists, explicit endorsements, or candidate “report cards” (see the NRA’s ratings). We group committees by type: PAC supporting Republican incumbent, Super PAC supporting Democratic challenger, etc. We focus on independent expenditures as they are directly comparable to the candidate’s election ad spending and do not have any limitations on the amount that can be spent. Campaign contributions to House candidates have strict limits per election ($2,900 from a PAC and $5,000 from a party committee) and thus are

11 We also do not consider lobbying. Lobbying activities are distinct from election support as lobbying targets current Representatives and bills while contributions and election spending target voters.

12 This is fairly innocuous. First, in most races only one committee per type spends non-trivial amounts. Second, in equilibrium, only the most efficient per type would spend non-trivial amounts.

13 We also include coordinated party expenditures as they are similar with relatively high limits: link.
unlikely avenues for major electoral influence from a single source. Party leadership does engage in significant fundraising. These funds are redistributed across many candidates, state-level committees, and used for direct ad buys (like independent and coordinated expenditures). We combine the independent expenditures from national and state-level party committees, acknowledging that they may have different ideal policies when supporting the same House candidate.

We control for committee assignments in their electoral influence and retrieve them from Charles Stewart III’s collected dataset and motivate our measure of seat importance on Stewart III and Groseclose (1999). We measure the “quality” of committee assignments that a given candidate has prior to the election by ranking all committees by the average tenure (of all members) on the committee (which captures the desirability and lack of transfers off of it) and take the average across all committees on which the candidate served. We set the quality to 0 for challengers.

Table 1 displays the summary statistics for the variables used in general election voter preferences. Figure 1 shows how candidate vote share changes with the gap between the candidate and the voters in their district. Most candidates pick positions that are closely aligned with their district. Candidates choose policies close to their voters, but parties care about voters across the country: Figure 2 shows the distribution of the squared difference between incumbent positions and the median voter; there is significant heterogeneity across districts and thus the party has an incentive to maneuver candidates to better match the nationwide median voter. Finally, the party leadership almost never funds extreme candidates, as illustrated in Figure 3, and rarely ever spends in support of a challenger who is more extreme than any incumbent.

4 Identification and Estimation

The basic elements of measuring party discipline include the observed position for candidate, unobserved ideal position for the candidate, and the unobserved ideal for the leadership. This ideal refers to the counterfactual position of when there is no discipline (candidate ideal) or complete

14 We use the committee placements. See Rohde and Shepsle (1973) for an application of committee request data.
Recall that the candidate’s observed position is a composite of their ideal and deviations from that ideal via discipline. So solving for their (latent) optimal choice and comparing it to their observed choice backs out the “discipline deviation”. Before estimating the parameters that influence the decision-making of candidates, we need to uncover the party’s ideal position, which is taken as given in the rest of the model. This is described in Section 4.2.

The model estimation steps in Sections 4.1-4.4 broadly follow the backward induction used to solve the model. First, we estimate the preferences of general election voters, which is effectively a regression of election vote share outcomes on spending, policy, and exogenously given candidate/district characteristics (including congressional committee assignments). Then, taking these voter preferences as given, we can estimate additional parameters that influence election committee spending, including the loyalty weight and implicit fundraising costs. These are estimated by regressing the marginal benefit of spending (in that race) on the marginal cost.

Next, the estimation is repeated for the primary, with voter preference and spending regressions. We now use primary election variation but still incorporate how actions in the primary affect the general election. Finally, we estimate the challenger entry decisions taking into account all previous steps. We fit a generalized linear model of the entry decision on the expected win probability as a function of candidate/district characteristics.

4.1 Voter Preferences Estimation

To estimate the vote share parameters (shown for the primary with a general election analog), we transform equation (6) into a linear regression and control for the unobserved candidate characteristics (valence) captured in \(\xi \). Specifically, we regress the turnout-adjusted log-odds vote shares on spending, policy, and committee assignments, and various district and candidate characteristics. This is shown in equation (11), where \(s_{P0} \) is the share of abstention in the primary election. The parameters of this regression capture voter preferences over observables and the residual captures

15 Assuming that the “no discipline” scenario is ideal for the candidate is not innocuous. It could be the case that voters care about how much the “whole party” accomplishes, which is affected by all positions, and thus a candidate may care about the positions of other candidates in the party. We abstract away from this possibility.
the candidate’s valence.

$$\ln\left(\frac{s_{ci}^P}{s_{ci}^0}\right) = \gamma_i^P (p_i^P - p_{ci})^2 + \delta^P d_{ci} + \sum_k \beta_k^P S_{kci}^\theta + X_{ci}^P \beta^P + \xi_{ci}^P$$

(11)

To estimate the remaining stages of the model, we need to have an estimate for the candidate valence for all candidates involved in the election. The estimated valences ξ from the voter preference regression (11) for both the general and primary elections are only recoverable for elections with vote shares between 0 and 1. In addition, those who lost the primary have a primary election estimated valence but no general election estimated valence, and non-entrants have neither. We approximate unobserved general election valences for primary losers by predicting general election valences from primary valence.

The valence for non-entrants cannot be directly estimated since the non-entrants never received any votes. State legislature candidates who did not run for Congress have state-level vote shares and their valences (relative to State-legislature candidates who run for Congress) are a good proxy for non-entrant quality differences. Cox (2021) finds that congressional non-entrants have a 20% lower valence in State legislature races and so we assume the non-entrants have a valence 20% lower than the mean for challengers in that state (per party).

4.2 Party Ideal Estimation

Next we solve for both party leaderships’ latent policy ideals as functions of the voter preferences. We plug in the previously estimated parameters and solve the system of first order conditions for equation (1) across both parties simultaneously for each election cycle. To avoid having to estimate all stages simultaneously as a nested fixed point, we set spending equal to zero for the party’s ideal calculation and flexibly approximate challenger decisions based on the incumbent’s policy and voter preferences. Given available data, we must normalize committee uncertainty ($\sigma_\xi = 1$) and assume that valence estimates equal the committee expectations $\xi = \psi$.

Figure 4 illustrates the party’s calculus and a source of their tension with the incumbent. This graph shows the incumbent’s vote share (excluding abstention) and the ideology difference between the voters in that district and the nationwide median. The positive relationship illustrates how safe seats are a function of more partisan districts. Thus when the party is considering all
districts simultaneously when choosing a policy, they implicitly put less weight on those seats that are very safe and focus on the bulk of seats that are more competitive with more moderate voters.

To directly determine a SIG’s ideal policy, we would need to know more about their profit function $\pi(p_k)$, which differs from their political spending objectives (8) and (10). Recall the party leadership’s objective function is well approximated (maximize seats), but each SIG has an unknown payoff π from how policy affects their respective interests. Our strategy to uncover SIG ideals is to use their observed spending and the model: how much they spend on candidates, controlling for how effective that spending is, reveals their preferences.

4.3 Spending Stages Estimation

Next we estimate the general election spending decisions by election committees aligned with each candidate $k = \{\text{candidate’s own campaign, party committees, PACs, and Super PACs}\} \forall g \in \{D, R\}$ with committee district specific marginal costs c_{G_kci}. Recall k’s objective when supporting candidate c in district i: $\max_{S_{G_{kci}}} P_G(S_{G_{kci}} | p_i, d_{ci}, W_{ci} = 1) \cdot \omega_k(p_k, p_{ci}) - c_{G_kci}(S_{G_{kci}})$. The loyalty weight ω_k is given below, where we allow party-specific penalty $\alpha_g > 0$. A small α_g implies there is little punishment whereas a large α_g implies only candidates who are close to the supporter’s ideal policy will receive any substantial help.

$$\omega_k(p_k, p_{ci}) = \exp(-\alpha_g|p_k - p_{ci}|)$$ \hspace{1cm} (12)

One may think that the party rewards past loyalty. While one could capture this by including the lagged policy gap inside the loyalty weight, in a given election, the party is incentivized to reward candidates that maximize their objective in that specific election cycle. It would also require an additional strictness parameter as the party could be faced with a candidate who was loyal in the past but whose current position is undesirable. Incorporating how such dynamics affect the candidate’s decision-making are beyond the scope of this analysis.

Next we derive the optimality conditions for each committee k spending in the election by differentiating their objective with respect to their spending, yielding a system of equations that can be rearranged and estimated. We parameterize costs as $c_{kci} = \exp(X_{kci} \delta_k + \epsilon_{kci}) \cdot S_{kci}$, where

\footnote{We can observe SIG’s policy stance via CFscores, but that is not a good proxy for their ideal because SIGs support candidates who do not line up exactly with them.}
\(X_{kci} \) are covariates that affect committee fundraising ability and \(\epsilon_{kci} \) is unobserved noise. For candidate committees, we include their policy and committee assignments as those may affect donors, meaning \([p_{ci}, d_{ci}] \in X_{kci}\) for candidates.\(^\text{17}\)

We estimate equation (13) for each committee type \(k \) in a distinct manner. For candidate committees, we just estimate \(\delta_k \) as there is no policy gap. For party committees, we estimate \(\delta_k \) and \(\alpha_g \). For SIGs, we estimate \(\delta_k \) and \(p^*_k \). We normalize \(\alpha_g \) to be equal to the party’s value, as we cannot separately identify the SIG’s ideal policy from their penalty. We estimate an ideal policy per SIG-type and party affiliation.

\[
\log(P_{ci}^G (1 - P_{ci}^G) \delta_k (S_{kci}^G \gamma - 1)) = X_{kci} \delta_k + \alpha_g |p_k^* - p_{ci}| + \epsilon_{kci}
\] \((13) \)

The left hand side captures committee \(k \)’s spending and its effects on the election. The variation identifying the penalty is the covariation between the marginal effectiveness of party spending on the vote share and the policy gap for the candidate and party, conditional on fundraising constraints \(X_{kci} \). The basic result can be seen in the data, where the correlation between party spending and the policy gap for competitive races is negative. Similarly, the SIG’s ideal policy is identified off how much they spend, controlling for its marginal effectiveness. Simply looking at how much they spend is insufficient as high spending could imply a small gap or high effectiveness. Thus estimating the voter preferences first is key. Since spending less than $200 is not reported, we set that as the minimum spending level.\(^\text{18}\)

Next, we estimate the primary election parameters for committees in both primaries. It is useful to decompose the unconditional win probability with general and primary election terms:

\[P_{ci} = Pr(W_{ci}^G = 1 | W_{ci}^P = 1) \cdot Pr(W_{ci}^P = 1). \]

Note that this can be expanded to also condition on

\(^{17}\)For SIGs, the policy gap captures this aspect; by not including policy in their cost function, we are assuming fundraising is independent of policy of candidate they support, but recall that SIGs only support candidates who are close to their ideal (which represents donors) so conditional on the policy gap, policy may not affect cost.

\(^{18}\)This is a trivial amount and this approach simply allows us to avoid dealing with corner solutions. Furthermore, practically every non-trivial candidate receives significant support through various channels. Modeling entry in both the primary and general complicates the estimation. We considered this in an earlier version of the paper; it required modeling a two-part weight and committee entry costs, which introduced new identification issues.
which opponent the candidate faces in the general (consider candidate \(R_1 \)’s perspective):

\[
P(W^G_{R_1} = 1) = P(W^G_{R_1} = 1 | W^P_{R_1} = 1, W^P_{D} = 1) \cdot P(W^P_{R_1} = 1) \cdot P(W^P_{D} = 1) \\
+ P(W^G_{R_1} = 1 | W^P_{R_1} = 1, W^P_{D_2} = 1) \cdot P(W^P_{R_1} = 1) \cdot P(W^P_{D_2} = 1)
\]

(14)

The first order conditions for the primary spending program let us estimate costs \(c^P \) for any committee spending in the primary. The main difficulty in this setup is dealing with the counterfactual general election win probability for the primary loser. Each candidate’s chances in the general election affect decision-making in the primary election but we only observe the general election outcomes for the primary winners. For example, Bernie Sanders lost the Democratic primary in 2020, but committees formed expectations about Sanders’ chances in the general election when deciding how much to spend in the primary.

Thus to evaluate the primary loser’s first order condition, we need to back out their general election chance. This probability is a function of the general election parameters we previously estimated. Thus to accurately capture primary election dynamics, estimating the general election first is key as then we can solve the general election stage for the unobserved candidate combination. With a known \(P^G_{ci} \) (known for primary winners and backed-out for primary losers), we estimate a primary analog to the general election regression (shown for a single contested primary). For SIGs that spent in the general election, the loyalty weight is already known and only unknown for SIGs whose preferred candidate lost the primary.

\[
\log(P^G_{ci} P^P_{ci} (1 - P^P_{ci}) \beta^P_1 \theta(S^P_{kci})^{\theta - 1}) = X^P_{kci} \delta^P_k + + \alpha_g |p^*_k - p_{ci}| + \epsilon^P_{kci}
\]

(15)

4.4 Challenger Entry Estimation

There is nothing to estimate in the challenger policy choice stage since we observe their policies and they simply maximize their win probability. Prior to policy is their entry stage. Their equilibrium entry is a function of the incumbent’s position \(p^I_i \), exogenous model variables \(Z_i \) (which includes their own valence and the relevant exogenous predictors from earlier stages), and unobserved fixed costs \(F_{ci} \) for each candidate. The main purpose of including challenger entry/policy is to simulate how the existence of challengers influences the incumbent’s decision. To this end, we estimate the equilibrium entry function with a Logit regression of whether the primary was
contested as a function of p_i^I, Z_i, and F_i. We parameterize $F_{ci} = \exp(X_{ci}^F \beta_F)$ where X_{ci}^F is a challenger party and incumbent party interaction.

5 Results

5.1 Parameter Estimates

5.1.1 Voter Preferences

Table 2 displays results for the voter preference regressions, meaning equation (11) for the general and primary elections. The dependent variable is a candidate’s turnout adjusted log vote share. We include many political, economic, and demographic controls to soak up confounding variation. We are primarily concerned with the effects of spending and voter preferences on the candidate’s vote share. We group all SIG and party spending into the “non-candidate” spending category.

The effect of candidate spending on the vote share is more effective per dollar than non-candidate spending; the candidate’s messaging is likely more effective than that of outside groups. Also, candidates consistently spend more than non-candidate groups, and the latter typically spend the most in competitive races in which groups on both sides are already spending. The policy gap between general election voter preferences and candidates is strongly negatively correlated with the vote share, indicating that voters punish candidates whose policies do not align with them.

For primaries, we see similar effects for both spending and the policy gap, as primary voters reward candidates who are closer to them. For Democratic primaries, the policy gap effect is noisier, indicating that Democratic primary voters may punish moderates less than Republican primary voters. Finally, the effect of congressional committee quality is effectively null on vote share. The electoral benefits to committee assignments arise from other channels such as better fundraising, which we discuss later.

5.1.2 Party Ideals

Table 3 displays the estimated party policy ideals each election cycle with percentile bootstrapped confidence intervals with 1,000 draws. We use the voter preference parameters in every district in a given cycle to estimate what single position the party would implement to maximize nationwide
seats. We find that the party’s ideal is more moderate than the average of their individual members, with Democratic (Republican) leadership preferring a position 15.4 (2.7) points closer to the middle than their average incumbent (from 0 to 100). The Republican leadership has a 17.0 point more partisan ideal position than Democrats, which may be a consequence of the higher primary election pressure on Republican incumbents and the fact that more districts lean slightly conservative than liberal. For districts that are close to the party’s ideal, there is little party spending except in cases where a high valence challenger threatens to unseat the incumbent. Note that in 2006 and 2008, the Democratic leadership’s ideal position moves to the right of zero. The reason is that the optimization is about maximizing the number of seats, and, as just noted, the district level median voter is slightly above 0. This ignores possible costs to “crossing over” (via encouraging primary challenger entry or alienating donors beyond what is captured in the model).

5.1.3 Election Committee Estimates

The main parameters of the election committee spending stages are displayed in Table 4 with percentile bootstrapped confidence intervals with 1,000 draws. Republican PACs and Super PACs have more moderate ideal preferences than political party leadership whereas Democratic PACs and Super PACs are more extreme than the party. Thus Democratic SIGs may help explain why the party is more moderate than candidates. The policy gap parameter is positive and significant, indicating that parties punish incumbents who have policies that stray too far from the party’s ideal. Both parties penalize, but Republican leadership places a 46% higher penalization on the gap than Democratic leadership. The Democrats are more lenient in terms of electoral support and that may be a function of their average lower reliance on outside spending during 2002-2018.

The spending cost function covariates for PACs, Super PACs, and party committees include a constant, number of senate candidates running in that state, district population, ad costs in that district relative to the state, scaled lagged presidential votes, and incumbent tenure relative to other incumbents in the state. The spending cost function for candidates includes all covariates used for other committees but also includes candidate policy and congressional committee quality. Candidates have the lowest costs, and this is largely due to the fact that candidates outspend all other committees even after accounting for their relative spending effectiveness.

Committee assignments do seem to help candidates in fundraising as the negative coefficient
on committee assignments in the candidate’s cost function indicates. Note that this effect is already taking into account the candidate characteristics that influence vote-getting. Policy also has effects on fundraising, with more extreme candidates have a harder time in the general election. In particular, a positive (negative) sign for the Republican (Democratic) general cost coefficient for policy means that costs are higher as policy becomes more extreme. The effect is significant for Republicans, consistent with their moderate SIG policy ideals. Both of these effects indicate that voters and donors can have distinct preferences and candidates balance these interests. Results from the primary elections are similar but imprecisely estimated. This is partially due to there being significantly less spending (and more idiosyncratic activity) in primaries than in general elections.

5.1.4 Explaining Candidate Positions

Candidates are very close to voters and the candidate’s position correlates with the voter’s ideal position more strongly than with SIGs or the party leadership. Democratic incumbents have a larger policy gap with general election voters on average (0.10) compared to Republicans (0.06). For Democrats, the average scaled incumbent position is -0.17, Super PAC ideal is -0.08, party leadership ideal is -0.02, PAC ideal is -0.14, and voter is -0.25 in the districts with a Democratic incumbent. Thus Democratic incumbent positions are pushed leftward by voter preferences and PACs with moderation pressure from the party and Super PACs. Average Republican scaled incumbent position is 0.22, Super PAC is 0.05, party is 0.19, PAC is 0.09, and voter is 0.28 in the districts with a Republican incumbent. Again voters drive incumbent positions, with moderation pressure coming from SIGs more than party leadership.

Figure 5 plots the histogram of difference between candidate and party positions. Candidates choose positions more extreme than what the party wants 81% of the time. The issue of moderates defecting from the party is less common but there is non-trivial mass below zero in the distribution. Since candidates do not internalize how their choice affects the party overall, they will be more sensitive to their primary voters than the leadership wakes the nationwide primary voters into account. On average, the difference in the candidate’s policy differs from the SIG’s policy by 4.6 points, from the party’s ideal by -6.0, from the general election voters by 0.4, and from primary election voters by -1.2. Thus we see that candidate’s place themselves between what general and primary voters want, which is slightly too extreme for SIGs and the party. SIG and party pref-
ferences are less important than voter preferences in explaining the candidate’s observed position. Republican positions are more strongly correlated with the party and SIGs than Democrats.

5.2 Counterfactuals

The counterfactual analysis plugs the estimated parameters into the model, changes some aspect of the model, and then resolves it for the new equilibrium outcomes across all stages. This method allows us to see how hypothetical changes to the environment affect optimal decision-making and electoral outcomes with a quantifiable prediction based on the estimated model.

5.2.1 Safer Seats

How does incumbent policy change as their seat gets safer? Consider incumbents getting safer seats by giving them higher valences in the general election. We consider a 2x increase in mean valence for a single candidate and re-solve the entire estimated model for equilibrium outcomes (and then repeat for every candidate). This change increases Democratic (Republican) incumbent mean vote share from 0.72 (0.67) to 0.94 (0.93). Democratic (Republican) incumbents become 26% (46%) more extreme as they now refocus on the primary; the median change is 0% for all districts and 10% for districts with contested primaries. Spending goes down as the election is less competitive. The distribution in the percent change of incumbent positions under this counterfactual scenario is displayed in Figure 6.

5.2.2 More Influential SIGs

Under what scenario would candidates shift towards SIG ideals? The model’s dynamic have the SIG spending after the position is revealed and the amount that they spend is based on their donors’ preferences for the candidate’s position. To see the extent to which a candidate can shift away from voters, consider a counterfactual of 10x times more effective general election SIG spending. By reducing the candidate’s relative ability to spend donations, the candidate is incentivized to pursue on SIG support, which means convincing the SIG’s donors to fund the SIG’s election ad spending. Since general election SIG preferences are on average more moderate than primary voters, Republicans moderate their positions by 2% and Democrats barely change. This indicates
that outside influence may be smaller for Democrats. Election chances in the primary and general
election barely change. SIGs are less important for incumbents as incumbent spending is larger
than SIG spending in most elections. Overall the effects are quite small because SIG election
spending is significantly less important than voter preferences in predicting candidate positions.

5.2.3 Changes to Party Discipline

The party’s disciplining ability is largely limited through one main mechanism: district level voter
preferences strongly predict the candidate’s position. Thus representatives are beholden to their
voters and shifting for the sake of funding is not worth the loss in votes. So how could the party
increase discipline? More effective party spending would slightly help, but as the SIG spending
counterfactual above shows, those effects are small.

What if the party leadership were able to be more stringent by committing to a harsher policy
gap penalty? This would lead to some lower win chances for candidates whose electoral situation
prevents them from moving in the party direction, but the overall movement of candidates may be
worth the cost. We consider a counterfactual with double the penalty cost. As a consequence, in-
cumbents become trivially more moderate. The variance of electoral support increases slightly as
closely aligned candidates receive relatively more and candidates that deviate receive less. When
the party threatens to decrease support, the candidate can either change their position in the di-
rection the party desires, engage in costly fundraising to spend more themselves, or rely more on
outside groups like Super PACs. We find that candidate spending increases when the party support
decreases. This highlights another cause of party weakness: since the party is not a major source
of funding for candidates to begin with, a more stringent party simply makes the isolated candidate
exert more effort in self-funding, making them even less sensitive to party demands.

Finally, congressional committee quality is treated as an exogenous covariate in the model.
The party changing it can affect incumbents but not directly via the policy gap: in our model, the
candidate would not internalize the fact that the party is changing the assignment due to policy
incongruity. The incumbent would only shift policy in response to the effects of the different
assignment on the vote share and fundraising. A worse assignment would slightly reduce their win
probability, forcing the candidate to either rely on party/SIG spending or pivot policy closer to the
voter ideal. While we do not model how the party allocates assignments as a function of the policy
gap, we consider a counterfactual of a 50% decrease in committee quality. We find a null effect on incumbent policy choice and a 1.6% decrease in win probability.

6 Concluding Remarks

In this paper we studied party discipline with a novel empirical approach. We solved for the party’s ideal and estimated an election model to capture the various costs and benefits the leadership faces when choosing how to sway their members. We find that voter preferences drive incumbent positions more than SIG or party preferences, and that primary voter pressure in safe seats is a major component in making disciplining difficult. These findings are consistent with the weak discipline observed in the United States Congress.

Our counterfactual simulations reiterate the finding that safe seats are a factor in the increased polarization in Congress, and the party leadership is largely helpless in addressing it. Their tool in elections, namely money, is limited in effectiveness and supply. If incumbents are primarily concerned with getting re-elected, then there is little room to convince them to choose policy that is not in alignment with their district. Furthermore, the parties differ in how much the leadership would want to shift their rank and file, creating asymmetric incentives across the aisles.

Finally, the role of congressional committee assignments is limited in our analysis. Its effects on outcomes are small, but we do not capture how the party leadership could condition desirable assignments on discipline. In a companion piece, we endogenize committee assignments and study their disciplining effects on the heterogeneous benefits of office-holding.

References

7 Figures and Tables

Figure 1: Candidate General Election Vote Share and Candidate-Voter Ideology Gap

This plots the data and polynomial fit of how candidate vote share changes with the gap between the candidate and the voters in their district; measure by squared difference in candidate’s normalized CF score and scaled lagged presidential votes.
This plots the histogram in the squared difference between candidate positions and the median voter; the median voter position is the median of scaled lagged presidential votes per election cycle across districts.
This plots the data of log party committee independent expenditures and the absolute value of the candidate policy position, separated for challengers and incumbents.
This plots the relationship between how safe a seat ends up being (excluding abstention) and the degree of relative extremism of the voters in that district.
Table 1: General Election Voter Regression Summary Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min.</th>
<th>Max.</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log(Vote Share)-Log(Abstention)</td>
<td>-0.744</td>
<td>0.869</td>
<td>-7.48</td>
<td>1.099</td>
<td>6599</td>
</tr>
<tr>
<td>Candidate Spending</td>
<td>1.938</td>
<td>4.331</td>
<td>0</td>
<td>50.221</td>
<td>14172</td>
</tr>
<tr>
<td>Non-Candidate Spending</td>
<td>1.294</td>
<td>5.268</td>
<td>0</td>
<td>93.637</td>
<td>14172</td>
</tr>
<tr>
<td>Can-Voter Policy Gap</td>
<td>0.184</td>
<td>0.249</td>
<td>0</td>
<td>3.366</td>
<td>14172</td>
</tr>
<tr>
<td>Can Com. Assignment</td>
<td>6.884</td>
<td>12.94</td>
<td>0</td>
<td>36</td>
<td>14172</td>
</tr>
<tr>
<td>Can Within-State Donor Income Changes</td>
<td>0.217</td>
<td>0.455</td>
<td>-3.789</td>
<td>5.663</td>
<td>14172</td>
</tr>
<tr>
<td>Party Within-State Donor Income Changes</td>
<td>0.123</td>
<td>0.213</td>
<td>-1.135</td>
<td>3.783</td>
<td>14172</td>
</tr>
<tr>
<td>S-PAC Within-State Donor Income Changes</td>
<td>0.139</td>
<td>0.388</td>
<td>-3.26</td>
<td>5.694</td>
<td>14172</td>
</tr>
<tr>
<td>District Unemployment Rate</td>
<td>5.907</td>
<td>2.025</td>
<td>2.142</td>
<td>16.869</td>
<td>14172</td>
</tr>
<tr>
<td>District Income</td>
<td>7.953</td>
<td>1.434</td>
<td>5.267</td>
<td>15.972</td>
<td>14164</td>
</tr>
<tr>
<td>District Unemployment Rate</td>
<td>8.799</td>
<td>6.222</td>
<td>1.151</td>
<td>29.548</td>
<td>14172</td>
</tr>
<tr>
<td>Last President Vote Share (R)</td>
<td>0.489</td>
<td>0.15</td>
<td>0.03</td>
<td>0.825</td>
<td>14172</td>
</tr>
<tr>
<td>Incumbent=1</td>
<td>0.226</td>
<td>0.418</td>
<td>0</td>
<td>1</td>
<td>14172</td>
</tr>
<tr>
<td>Party=Republican</td>
<td>0.5</td>
<td>0.5</td>
<td>0</td>
<td>1</td>
<td>14172</td>
</tr>
<tr>
<td>Incumbent Lagged Votes</td>
<td>0.528</td>
<td>0.306</td>
<td>0</td>
<td>1</td>
<td>14168</td>
</tr>
<tr>
<td>Number of Senate Candidate Running</td>
<td>6.787</td>
<td>6.711</td>
<td>0</td>
<td>29</td>
<td>14172</td>
</tr>
<tr>
<td>Governor Same Party</td>
<td>0.483</td>
<td>0.5</td>
<td>0</td>
<td>1</td>
<td>14172</td>
</tr>
<tr>
<td>District % < High School</td>
<td>29.164</td>
<td>6.367</td>
<td>11.2</td>
<td>47.602</td>
<td>14172</td>
</tr>
<tr>
<td>District Median Age</td>
<td>40.083</td>
<td>3.513</td>
<td>29.306</td>
<td>51.269</td>
<td>14172</td>
</tr>
<tr>
<td>District Mean Precipitation</td>
<td>0.126</td>
<td>0.14</td>
<td>0</td>
<td>1.09</td>
<td>14172</td>
</tr>
<tr>
<td>District % White</td>
<td>0.746</td>
<td>0.176</td>
<td>0.16</td>
<td>0.968</td>
<td>14172</td>
</tr>
<tr>
<td>District % Men</td>
<td>0.491</td>
<td>0.01</td>
<td>0.457</td>
<td>0.537</td>
<td>14172</td>
</tr>
<tr>
<td>Candidate Positions</td>
<td>0.006</td>
<td>0.213</td>
<td>-1.005</td>
<td>1</td>
<td>14172</td>
</tr>
<tr>
<td>Voter Positions</td>
<td>0.03</td>
<td>0.376</td>
<td>-1</td>
<td>1</td>
<td>14172</td>
</tr>
</tbody>
</table>

Spending is transformed by taking the square root of spending in thousands.
Table 2: Voter Preference Regressions

<table>
<thead>
<tr>
<th>DV: Log(Vote Share/Abstention)</th>
<th>General</th>
<th>R Primary</th>
<th>D Primary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candidate Spending</td>
<td>0.0054*** (0.0016)</td>
<td>0.0501*** (0.0044)</td>
<td>0.0623*** (0.0053)</td>
</tr>
<tr>
<td>Non-Candidate Spending</td>
<td>0.0025* (0.0011)</td>
<td>0.0117* (0.0050)</td>
<td>0.0166** (0.0058)</td>
</tr>
<tr>
<td>Can-Voter Policy Gap</td>
<td>-0.3662*** (0.0368)</td>
<td>-0.2066* (0.1011)</td>
<td>-0.0993 (0.0656)</td>
</tr>
<tr>
<td>Can Com. Assignment</td>
<td>0.0033 (0.0018)</td>
<td>0.0036 (0.0033)</td>
<td>0.0053 (0.0039)</td>
</tr>
<tr>
<td>Party=Republican=0 × Rural</td>
<td>0.0800*** (0.0084)</td>
<td>1.1391*** (0.0142)</td>
<td></td>
</tr>
<tr>
<td>Party=Republican=1 × Rural</td>
<td>0.0709*** (0.0097)</td>
<td>0.0654*** (0.0148)</td>
<td></td>
</tr>
<tr>
<td>Can Within-State Donor Income Changes</td>
<td>0.0146 (0.0196)</td>
<td>0.0790* (0.0354)</td>
<td>0.1750*** (0.0369)</td>
</tr>
<tr>
<td>Party Within-State Donor Income Changes</td>
<td>-0.0763 (0.0446)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-PAC Within-State Donor Income Changes</td>
<td>-0.0189 (0.0196)</td>
<td>-0.0863 (0.0549)</td>
<td>-0.1579*** (0.0450)</td>
</tr>
<tr>
<td>District Unemployment Rate</td>
<td>0.0224** (0.0075)</td>
<td>-0.0145 (0.0129)</td>
<td>0.0201 (0.0167)</td>
</tr>
<tr>
<td>District Income</td>
<td>0.0964*** (0.0103)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>District Unemployment Rate</td>
<td>-0.0320*** (0.0027)</td>
<td>-0.0157** (0.0057)</td>
<td>-0.0036 (0.0056)</td>
</tr>
<tr>
<td>Last President Vote Share (R)</td>
<td>-0.3168** (0.1222)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incumbent</td>
<td>25.2401*** (4.9162)</td>
<td>49.0079*** (9.9207)</td>
<td>-55.7476*** (10.5298)</td>
</tr>
<tr>
<td>Republican</td>
<td>9.1239 (4.9928)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incumbent Lagged Votes</td>
<td>-0.1019** (0.0373)</td>
<td>-0.2853*** (0.0722)</td>
<td>-0.0063 (0.0647)</td>
</tr>
<tr>
<td>Number of Senate Candidate Running</td>
<td>0.0019* (0.0010)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Governor Same Party</td>
<td>-0.0073 (0.0128)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incumbent=0 × Republican=0 × Cook’s</td>
<td>-0.0303* (0.0119)</td>
<td>0.0492*** (0.0091)</td>
<td></td>
</tr>
<tr>
<td>Incumbent=0 × Republican=1 × Cook’s</td>
<td>0.0888*** (0.0074)</td>
<td>0.0075 (0.0089)</td>
<td></td>
</tr>
<tr>
<td>Incumbent=1 × Republican=0 × Cook’s</td>
<td>-0.0088 (0.0172)</td>
<td>-0.1685*** (0.0338)</td>
<td></td>
</tr>
<tr>
<td>Incumbent=1 × Republican=1 × Cook’s</td>
<td>0.0715*** (0.0217)</td>
<td>0.1123*** (0.0251)</td>
<td></td>
</tr>
<tr>
<td>Republican=0 × Incumbent=0 × Cycle</td>
<td>0.0181*** (0.0032)</td>
<td>-0.0281*** (0.0052)</td>
<td></td>
</tr>
<tr>
<td>Republican=0 × Incumbent=1 × Cycle</td>
<td>0.0057* (0.0024)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Republican=1 × Incumbent=0 × Cycle</td>
<td>0.0125*** (0.0025)</td>
<td>0.0242*** (0.0049)</td>
<td></td>
</tr>
</tbody>
</table>

Observations 6573 4091 3995
R^2 0.713 0.557 0.459
State FEs yes yes yes
Year FEs yes yes yes
District Demographics Interactions yes yes yes

Robust standard errors in parentheses; * p < 0.05, ** p < 0.01, *** p < 0.001. The dependent variable is the difference in the log of vote shares for the candidate and the "outside share", meaning non-voting subset. Cook's refers to Cook's competitiveness ratings. "District Demographics Interactions" refer to party-incumbency interactions with district demographics including age, education, gender, and race.
Table 3: Party Policy Ideals

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Coefficient</th>
<th>Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Republican</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>0.1417</td>
<td>[0.1054, 0.1763]</td>
</tr>
<tr>
<td>2004</td>
<td>0.1391</td>
<td>[0.1059, 0.1766]</td>
</tr>
<tr>
<td>2006</td>
<td>0.1958</td>
<td>[0.1612, 0.2249]</td>
</tr>
<tr>
<td>2008</td>
<td>0.2003</td>
<td>[0.1680, 0.2318]</td>
</tr>
<tr>
<td>2010</td>
<td>0.1693</td>
<td>[0.1353, 0.2018]</td>
</tr>
<tr>
<td>2012</td>
<td>0.1654</td>
<td>[0.1293, 0.2019]</td>
</tr>
<tr>
<td>2014</td>
<td>0.2214</td>
<td>[0.1830, 0.2611]</td>
</tr>
<tr>
<td>2016</td>
<td>0.1874</td>
<td>[0.1440, 0.2268]</td>
</tr>
<tr>
<td>2018</td>
<td>0.2694</td>
<td>[0.2292, 0.3100]</td>
</tr>
<tr>
<td></td>
<td>Democratic</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>-0.0154</td>
<td>[-0.0530, 0.0181]</td>
</tr>
<tr>
<td>2004</td>
<td>-0.0067</td>
<td>[-0.0414, 0.0278]</td>
</tr>
<tr>
<td>2006</td>
<td>0.0627</td>
<td>[0.0286, 0.0946]</td>
</tr>
<tr>
<td>2008</td>
<td>0.0514</td>
<td>[0.0181, 0.0833]</td>
</tr>
<tr>
<td>2010</td>
<td>-0.1091</td>
<td>[-0.1415, -0.0763]</td>
</tr>
<tr>
<td>2012</td>
<td>-0.0817</td>
<td>[-0.1165, -0.0469]</td>
</tr>
<tr>
<td>2014</td>
<td>-0.0051</td>
<td>[-0.0452, 0.0322]</td>
</tr>
<tr>
<td>2016</td>
<td>-0.0252</td>
<td>[-0.0680, 0.0139]</td>
</tr>
<tr>
<td>2018</td>
<td>-0.0274</td>
<td>[-0.0687, 0.0179]</td>
</tr>
</tbody>
</table>

95% Confidence intervals in parentheses, calculated with 1,000 bootstrap draws.
Table 4: Election Committee Parameters

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Coefficient</th>
<th>Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-SPAC Ideal</td>
<td>0.0430</td>
<td>[0.0329, 0.2182]</td>
</tr>
<tr>
<td>R-PAC Ideal</td>
<td>0.0978</td>
<td>[0.0844, 0.2257]</td>
</tr>
<tr>
<td>D-SPAC Ideal</td>
<td>-0.0941</td>
<td>[-0.3180, -0.0345]</td>
</tr>
<tr>
<td>D-PAC Ideal</td>
<td>-0.1418</td>
<td>[-0.2634, -0.1244]</td>
</tr>
<tr>
<td>R-Policy-Gap Importance</td>
<td>1.9956</td>
<td>[1.1034, 2.8115]</td>
</tr>
<tr>
<td>D-Policy-Gap Importance</td>
<td>1.0832</td>
<td>[0.4486, 1.6465]</td>
</tr>
<tr>
<td>R-CAN General Costs</td>
<td>0.0004</td>
<td>[0.0004, 0.0004]</td>
</tr>
<tr>
<td>R-SPAC General Costs</td>
<td>0.0019</td>
<td>[0.0018, 0.0019]</td>
</tr>
<tr>
<td>R-PAR General Costs</td>
<td>0.0018</td>
<td>[0.0017, 0.0019]</td>
</tr>
<tr>
<td>R-PAC General Costs</td>
<td>0.0016</td>
<td>[0.0016, 0.0016]</td>
</tr>
<tr>
<td>D-CAN General Costs</td>
<td>0.0002</td>
<td>[0.0001, 0.0002]</td>
</tr>
<tr>
<td>D-SPAC General Costs</td>
<td>0.0019</td>
<td>[0.0018, 0.0019]</td>
</tr>
<tr>
<td>D-PAR General Costs</td>
<td>0.0018</td>
<td>[0.0017, 0.0019]</td>
</tr>
<tr>
<td>D-PAC General Costs</td>
<td>0.0016</td>
<td>[0.0016, 0.0016]</td>
</tr>
<tr>
<td>R-CAN General Cost: Policy</td>
<td>1.6093</td>
<td>[0.9906, 2.3051]</td>
</tr>
<tr>
<td>R-CAN General Cost: CCA</td>
<td>-0.0131</td>
<td>[-0.0173, -0.0091]</td>
</tr>
<tr>
<td>D-CAN General Cost: Policy</td>
<td>-0.1783</td>
<td>[-0.6998, 0.3555]</td>
</tr>
<tr>
<td>D-CAN General Cost: CCA</td>
<td>-0.0190</td>
<td>[-0.0238, -0.0145]</td>
</tr>
<tr>
<td>R-CAN Primary Cost: Policy</td>
<td>4.7697</td>
<td>[-34.5550, 51.3445]</td>
</tr>
<tr>
<td>R-CAN Primary Cost: CCA</td>
<td>0.0649</td>
<td>[-0.0173, 0.2140]</td>
</tr>
<tr>
<td>D-CAN Primary Cost: Policy</td>
<td>-0.8110</td>
<td>[-1.8408, 0.0711]</td>
</tr>
<tr>
<td>D-CAN Primary Cost: CCA</td>
<td>-0.0271</td>
<td>[-0.0331, -0.0163]</td>
</tr>
</tbody>
</table>

95% Confidence intervals in parentheses, calculated with 1,000 bootstrap draws. CCA refers to congressional committee assignments.
Figure 5: Difference in Candidate and Party Ideal Absolute Positions

This plots the histogram of the difference in candidate absolute positions and their party leadership’s absolute ideal. A positive difference means the candidate is more extreme than what the party wants.
Figure 6: Counterfactual: Change in Incumbent Absolute Position with Safer Seats

This plots the histogram of the percent change in incumbent absolute positions in the model and in the counterfactual situation of safer seats for incumbents with a primary challenger.